dots bg

Business Intelligence/Data Analyst Bootcamp

Course Instructor OdinSchool

FREE

To enroll in this course, please contact the Admin
dots bg

Course Overview

Schedule of Classes

Course Curriculum

1 Subject

Business Intelligence/Data Analyst

18 Exercises451 Learning Materials

Step Up

1. Introduction to Computers and Operating Systems

2. Internet and Web Browsing

3. Email and Online Communication

4. Word Processing and Document Management

5. Spreadsheets and Data Management

6. Text Editors vs. Integrated Development Environments (IDEs)

7. Graphical User Interface (GUI)

8. Command-Line Interface (CLI)

9. Introduction to Programming and Data Science

SQL

MySQL Workbench Installation for Windows

MYSQL Workbench Installation For MAC

Importing SQL files in Workbench

1. Introduction to SQL

2. Create Database

3. Insert

4. Alter

5. Select

6. String Functions

7. Numeric and Temporal functions

SQL functions- Order by, Limit

Like and ILike (wildcards)

Aggregate functions in SQL

Group By

Having

SQL Joins

Inner Join

Full outer join

Left Outer Join

Python

1. Google Colab - Part 1

2. Google Colab - Part 2

How to read a file in Jupyter Notebook

How to read a file in Google Colab

Anaconda Installation

3. Understanding Programming

4. Python properties and applications

5. Variables and Values

6. Data Types-Integer

7. Data Types-Float

8. Data Types-Boolean

9. Data Types- String

10. Single and Multi-line commenting

11. Input, output and formatting

12. Indexing & Slicing in Strings

13. Conditionals

14. If statements

15. Else & Elif Statement

16. Logical operations in conditionals

Statistics

1. What statistics is and what data are?

2. Qualitative data (nominal and ordinal)

3. Quantitative data (discrete and continuous)

4. Sample and Population

5. Sampling techniques

6. Measures of Central Tendency (Mean, median and mode)

7. Measures of Dispersion (variance, sd and IQR) and skewness

8. Bar plot

9. Pie chart

10. Histograms

11. Scatter plots

12. Box whiskers-Plot

13. Graph hands on python

14. Intro to probability

15. Important concepts (event, set, subset, sample space)

16. Important concepts (intersection, union, complement)

17. Disjoint, non-disjoint and independent event

18. Conditional probability

19. Normal distribution

20. Bayesian inference

21. Binomial distribution

22. Poisson distribution

23. Central Limit Theorem

24. Confidence Interval

25. Null and alternative hypothesis

26. One tailed and two tailed tests

27. Significance level and p value

28. Type I and Type II Errors

29. Statistical power

30. T distribution and degree of freedom

31. One sample T test

32. Independent sample T test

33. Paired T test

34. F distribution

35. One way Anova

36. Two way Anova

37. Contingency Table

38. Pearson's correlation coefficient

39. Chi-square Test

Statistics - Live Session - Recording - Week 1 - Day 2

Statistics - Live Session - Recording - Week 2 - Day 1

Statistics - Live Session - Recording - Week 2 - Day 2

Statistics - Live Session - Recording - Week 3 - Day 1

Statistics - Live Session - Recording - Week 3 - Day 2

EDA

1.Basic Exploration

2.Missing Values

3.Outlier

4.Dealing with skewed data

5.Data Visualization 1

6.Data Visualization 2

7.Binning

8.Dummy variable

9.Feature scaling

Machine Learning

1.Scalar ,vector, matrix and arrays

2.Matrix multiplication

3.Null and alternative hypothesis

4.One tailed and two tailed tests

5.Significance level and p value

6.Type I and Type II Errors

7.What is a Decision Tree

8.Decision Tree in Brief

9.Terminologies used

10.Case study - EDA

11.Case study - ML

12.What is Random Forest?

13.Working Philosophy

14.Terminologies & Real-life examples

15.Case Study - ML

16.What is K-nearest-neighbour?

17.How does this work?

18.Walk through Sci-kit website

19.Case study - ML

20.Basic of Support Vector Machine

21.Why the name

22.Kernel, Gamma and C value

23.Case Study - ML

24.What is Naive Bayes Theorem

25.Why the name

26.Case study - ML

27.What is unsupervised learning?

28.What is k-means & clustering

29.Case Study - ML

30.What is Market Basket Analysis

31.How does it work

32.Case study - ML

33.Analogy of TSA

34.Parts of TSA

35.Intro to TSA

36.Rolling Stats

37.ACF and PACF

38.Understanding PCA

39.Case study - ML

40.Understand NLP in detail

41.Case Study - ML

42. Deep Learning - ANN

43.1 Deep Learning - CNN (Part 1 )

43.2 Deep Learning - CNN (Part 2)

44.1 RNN - Part 1

44.2 RNN - Part 2

44.3 RNN - Part 3

45.1 NLP PART 1

45.2 NLP- PART 2

45.3 NLP - Part 3

45.4 NLP- PART 4

45.5 NLP- PART 5

45.6 NLP - part 6

45.7 NLP- PART 7

45.8 NLP- PART 8

46.1 Open CV - Part 1

46.2 Open CV - Part 2

46.3 Open CV - Part 3

46.4 Open CV - Part 4

46.5 Open CV - Part 5(a)

46.6 Open CV - Part 5 (b)

46.7 Open CV - Part 6

46.8 Open CV - Part 7(a)

46.9 Open CV - Part 7(b)

47.1 Scikit-Image - Part 1

47.2 Scikit-Image - Part 2

47.3 Scikit-Image - Part 3

47. 4 Scikit-Image - Part 4

48. Reinforcement learning

EDA+ML - Live Session - Recording - Week 1 - Day 1

External Link

EDA+ML - Live Session - Recording - Week 1 - Day 2

EDA+ML - Live Session - Recording - Week 2 - Day 1

EDA+ML - Live Session - Recording - Week 2 - Day 2

External Link

EDA+ML - Live Session - Recording - Week 3 - Day 1

External Link

EDA+ML - Live Session - Recording - Week 3 - Day 2

PySpark

1.BIG DATA HISTORY PART 1

2.BIG DATA HISTORY PART 2

3.RDD Introduction

4.spark ecosystem

5.spark_lazy_evulation

6.spark_RDD_Setup_On_Google_Colab

7.Spark context & Spark Session

8.Spark RDD Transformation - Part 1

9.Spark RDD Transformation - Part 2

10.Spark RDD Transformation - Part 3

11.RDD ACTION

12.DataFrame - Part 1

13.DataFrame - Part 2

14.Spark-shell, spark-submit & running spark in local

PySpark - Live Session - Recording - Week 1 - Day 1

PySpark - Live Session - Recording - Week 1 - Day 2

External Link

PySpark - Live Session - Recording - Week 2 - Day 1

PySpark - Live Session - Recording - Week 2 - Day 2

External Link

PySpark - Live Session - Recording - Week 3 - Day 1

External Link

PySpark - Live Session - Recording - Week 3 - Day 2

Power BI

Power BI Course Material

ZIP

Module 1

Image

1. Clustered or Stacked Chart

2. Treemaps

3. Area Chart

4. Donut Chart

5. Cards Multicard

Module 2

Image

1. Gauge Chart

2. Combo Charts

3. Funnel Charts

Module 3

Image

1. Scatter Plot

2. Maps

3. Dynamic Title

4. KPIs

5. Key influencers chart

6. Waterfall charts

Module 4

Image

1. Decomposition Tree

2. Q and A Visual

3. Smart Narrative

Module 5

Image

1. Import Custom Visuals

2. Add Visuals Using Python

Module 6

Image

1. Static Row - Level Security

2. Dynamic Row - Level Security

Module 7

Image

1. Drill Down

2. Drill Through

3. Visual Tooltips and ToolTip Page

Module 8

Image

1. Data Fields

2. Configuring Conditional Formatting

3. Configuring Small Multiples

4. Configuring the Report Page

5. Color Combinations

6. Data Analytics Pane

7. Creating hierarchies

Module 9

Image

1. Difference between Service and Desktop

2. Using Microsoft account

3. Using office_email

Module 10

Image

1. Define and Measure

2. Evaluate

3. Variable

Module 11

Image

1. Visualization End to End Project

Module 12

Image

1. SWITCH, KEEPFILTERS, ALLSELECTED

2. RANKX , SELECTEDVALUE , TOPN

ALL

Module 13. Azure Fundamental

External Link

Module 14. Importing Data from various Sources

External Link

Module 15. Import Direct Query and Live Connection

External Link

Module 16. What if Parameter

External Link

Module 17. Advance Power Query

Image

1. Advance Power Query

2. Invoke Custom Functions

Module 18. Advance DAX - Currency Conversion

Image

1. M Language

2. Currency Conversion

Module 19. DAX

Image

1. DAX RT

2. Coalesce DAX

3. Path DAX

Module 20. DAX Engine

Module 21. Introduction to Paginated Report

Module 22. PL 300 Certification Preparation

Module 23. Dataset Data Flow

Module 24. Best Practices for Power BI Reporting

Module 25. Power BI services (Pro and Premium Per User)

Module 26. Advance Power BI service (Apps, PPU, Deployment Pipelines)

Module 27. Service Incremental Refresh, Workspace Role

Module 28. Dynamic RLS, Configuring Subscription, Configuring

Module 29. Paginated Report builder. Creating Charts, Table, Row and Column Groups

Module 30. Creating Complete Report with formatting, theme, etc as per customer requirements

Module 31. Integrate Power BI reports dashboard with MS team and Power Point

Module 32. End to End Project

Power BI - Live Session - Recording - Week 1 - Day 1

Power BI - Live Session - Recording - Week 1 - Day 2

Power BI - Live Session - Recording - Week 2 - Day 1

Power BI - Live Session - Recording - Week 2 - Day 2

Power BI - Live Session - Recording - Week 3 - Day 1

External Link

Power BI - Live Session - Recording - Week 3 - Day 2

Azure

1.Introduction to Azure

2.Cloud basics

3.Azure services - Virtual Machines

4.Azure services - Azure SQL - Database

5.Azure Storage

6.Azure Sql Databases

7.Azure sql databases 1

8.Stream Analytics

9. SSMS Installation Video

10."Create Azure Data Factory Account Azure Data Factory Studio Overview "

11."Create Azure SQL Database Create First ADF Pipeline"

12."Create Dynamic Linked Service and Dataset "

13. Linked Service Parameterization in Data factory

14.Lookup Activity in Azure Data Factory

15.System Variables in ADF

16.Web activity in ADF

17. Set Variable in Azure Data Factory

18.Data Flow in ADF

19."Debug Pipeline in ADF Schedule Trigger in ADF "

20.Tumbling Window and Storage Event in ADF

21."Global Parameter in ADF "

22.Monitoring & Alert Rule in ADF

23.Introduction : Azure DataBricks

24.What is Databricks workspace?

25.Azure Databricks Workspace

26.Azure Databricks Utilties(dbutils)

27."Azure Databricks"

28.Create SQL Warehouse in Azure Databricks

29. Azure Databricks

30.Azure Databricks Mount ADLS gen 2

31.Azure Databricks Integration Delta lake Architecture

32.Azure Databricks Streaming

33.Azure Stream Analytics

34. Introduction to Azure Synapse Analytics and Creating Workspace

35.Analyse Data with Serverless and Dedicated SQL pool

36.Analyze data with Server less Spark Pool in Azure Synapse Analytics

37.Analyse data in Storage account and Integrate pipeline in Azure Synapse Analytics workspace

38.Monitor and add an Administrator to the synapse

39.Overview of Azure purview

40.Azure Synapse SQL Architecture

41.Serverless SQL pool in Azure Synapse analytics

42.Create External Data source in azure synapse analytics

43.Create External file format in Synapse

44.CETAS with synapse SQL in Synapse Analytics

45.CTAS with synapse sql in synapse analytics

DE

DE - Live Session - Recording - Week 1 - Day 1

DE - Live Session - Recording - Week 1 - Day 2

DE - Live Session - Recording - Week 2 - Day 1

External Link

DE - Live Session - Recording - Week 2 - Day 2

External Link

Tableau

1 Get Started

Image

1.1 Introduction and Installation

1.2 Basic Tableau Functions

2 Working with Charts

Image

2.1 Working with Time series

2.2 Creating a map, working with hierarchies & calculated fields

2.3 Understanding Aggregations and granularity

2.4 Creating scatter plot, applying filters

3 Using Multiple Datasets

Image

3.1 Joining and Blending

3.2 Creating a dual axis chart and a tree map

4 Dashboards and Stories

Image

4.1 Creating dashboard, advanced dashboard interactivity

4.2 Creating stories

5 Advanced Tableau Functions

Image

5.1 Tableau Parameters

5.2 Tableau Forecasting

5.3 Relationships in Tableau

ETL

ETL Installation

External Link

ETL - Live Session - Recording - Week 1 - Day 1

External Link

ETL - Live Session - Recording - Week 1 - Day 2

External Link

ETL - Live Session - Recording - Week 2 - Day 1

External Link

ETL - Live Session - Recording - Week 2 - Day 2

External Link

Business Intelligence

Business Intelligence - Live Session - Recording - Week 1 - Day 1

Business Intelligence - Live Session - Recording - Week 1 - Day 2

External Link

Advanced Excel

Advance Excel - Live Session - Recording - 1

Advance Excel - Live Session - Recording - 2

Advance Excel - Live Session - Recording - 3

Python Challenges

Challenge - 1

External Link

Challenge - 2

External Link

CAP - E Learning Videos

Module 1

Image

1. The word that has haunted us most of our lives

2. The Brain & Learning

Video link

External Link

3.1. The Brain & Learning New skills - 1

Video link

External Link

3.2 The Brain & Learning New Skills - 2

4. Formula for learning any Skill & Why certain people learn skills faster?

Video link

External Link

5. How to learn effectively

6. The key factor for learning

Module 2

Image

1. Introduction & Embracing fear

Video Link

2. Response to fear - FFF

Video Link

External Link

Video Link

External Link

3. How to be more confident - Tip No 1

4. How to be more confident - Tip No 2

5. How to be more confident - Tip No 3

6. Quick & simple confidence builder tips

7. Conclusion

Module 3

Image

1. Introduction & activity

2. What are emotions

3. Are emotions good or bad

Video Link

External Link

4. What is Emotional Intelligence ?

5. Steps to improve Emotional Intelligence

6. Cycle of Emotional Intelligence

7. Conclusion

Module 4

Image

1. Introduction and Activity

2.1. Habit no 1 - Beat Procrastination -1

Video Link

External Link

2.2. Habit no 1 - Beat Procrastination - 2

Video Link

External Link

3. Habit no 2 - Mono vs Multi tasking

4. Habit no 3 - Schedule everything

5. Habit no 4 - 1-4-1 technique

6. Habit no 5 - Habit Stacking

Video Link

External Link

7. Habit no 6 - Prioritization

Video Link

External Link

8. Habit no 7&8 - Have a hobby - Sleep or Exercise

9. Conclusion

Bonus video

External Link

Module 5

Image

1.Introduction to Problem Solving

2. Work/Problem solving

3. Evolution of Design thinking

4.1. Step 1 - Empathy -1

Video Link

External Link

4.2. Step 1 - Empathy - 2

5. Step 2- Define the Problem

6. Step 3 - Ideation

7. Step 4 and 5 - Prototyping and Testing

The word that has haunted us most of our lives - Questionnaire

Exercise

The Brain & Learning - Questionnaire

Exercise

Formula for learning any Skill & Why certain people learn skills faster? - Questionnaire

Exercise

How to learn effectively - Questionnaire

Exercise

The key factor for learning - Questionnaire

Exercise

Introduction & Embracing fear - Questionnaire

Exercise

Response to fear - FFF - Questionnaire

Exercise

How to be more confident - Tip No 1 - Questionnaire

Exercise

How to be more confident - Tip No 2 - Questionnaire

Exercise

How to be more confident - Tip No 3 - Questionnaire

Exercise

Quick & simple confidence builder tips - Questionnaire

Exercise

Conclusion - Questionnaire

Exercise

What are emotions? - Questionnaire

Exercise

Are emotions good or bad? - Questionnaire

Exercise

What is Emotional intelligence? - Questionnaire

Exercise

Steps to improve Emotional Intelligence - Questionnaire

Exercise

Cycle of Emotional Intelligence - Questionnaire

Exercise

Habit no 1 - Beat procrastination - Questionnaire

Exercise

Data Analytics using Microsoft Excel

Course Overview

External Link

Communicating the Story that Data Insights Represent

Introduction

External Link

Role of Data Insights in Decision Making

External Link

Communicating Visually and Effectively Part 1

External Link

Communicating Visually and Effectively Part 2

External Link

Summary

External Link

Visual Interpretation and Communication of Data

Data Interpretation - Overview

External Link

Data Interpretation - Meaning, Benefits and Challenges

External Link

Data Interpretation - Example

External Link

Analyzing Quantitative Data

External Link

Analyzing Qualitative Data

External Link

Chart Thought Starter: Do's and Don’ts

Psychology of Data Visualization: Overview

External Link

Psychology of Data Visualization: Bringing our Visualization from Good to Great

External Link

Cognitive Research on Human Preference and Behaviour

External Link

Smart Data Discovery - Cognitive Psychology: The Science of Perception

External Link

Smart Data Discovery - Role of Data Discovery in Self-Service BI

External Link

Using Microsoft Excel as Story-Telling Tool

Introduction to the module

External Link

Explore Preliminary Patterns

External Link

Organizing data in a Hierarchy

External Link

Working with Excel Charts and Sparklines & Analyzing data trends with Sparklines - Part 1

External Link

Working with Excel Charts and Sparklines & Analyzing data trends with Sparklines - Part 2

External Link

Working with Excel Charts and Sparklines & Analyzing data trends with Sparklines - Part 3

External Link

Data Insights—360° View

Analyzing impact of data metrics by dimensions

External Link

Linear regression (Through scatter plots)

External Link

Pareto Analysis

External Link

Using decomposition tree concepts in excel for root cause analysis

External Link

Using Microsoft Excel Self-Service BI as a Storytelling Tool

Introduction

External Link

Practice Data Modelling through Power Pivot - Demo Time

External Link

Practice Data Modelling through Power Pivot - Part 2

External Link

Practice Data Modelling through Power Pivot - Part 3

External Link

The Last Mile - The Last Mile: Using Maps to Showcase Data—Advanced Visualization

External Link

The Last Mile - The Last Mile: Using Maps to Showcase Data—Advanced Visualization (Cont’d)

External Link

Download - Analytics_Practice Datasets

Analytics Practice Datasets

ZIP

Course Instructor

tutor image

OdinSchool

128 Courses   •   25703 Students